|
#define | F2Q(f) ((int)((f) * 0x8000)) |
| Q15 square root function. More...
|
|
Computes the square root of a number. There are separate functions for Q15, Q31, and floating-point data types. The square root function is computed using the Newton-Raphson algorithm. This is an iterative algorithm of the form:
x1 = x0 - f(x0)/f'(x0)
where x1
is the current estimate, x0
is the previous estimate, and f'(x0)
is the derivative of f()
evaluated at x0
. For the square root function, the algorithm reduces to:
x0 = in/2 [initial guess]
x1 = 1/2 * (x0 + in/x0) [each iteration]
◆ F2Q
#define F2Q |
( |
|
f | ) |
((int)((f) * 0x8000)) |
Q15 square root function.
- Parameters
-
[out] | aOut | points to square root of input value. |
[in] | aIn | input value. The range of the input value is [0 1) |
- Returns
- execution status
◆ tpt_sqrt_f32()
floating-point square root function.
- Parameters
-
[out] | aOut | points to square root of input value. |
[in] | aIn | input value. |
- Returns
- execution status
◆ tpt_sqrt_q15()
Q15 square root function.
- Parameters
-
[out] | aOut | points to square root of input value. |
[in] | aIn | input value. The range of the input value is [0 1) |
- Returns
- execution status
◆ tpt_sqrt_q31()
Q31 square root function.
- Parameters
-
[out] | aOut | points to square root of input value. |
[in] | aIn | input value. The range of the input value is [0 1) |
- Returns
- execution status
◆ tpt_vlog_q31()
void tpt_vlog_q31 |
( |
q31_t * |
aOutData, |
|
|
const q31_t * |
aInData, |
|
|
uint32_t |
aCount |
|
) |
| |
q31 vector of log values.
- Parameters
-
[in] | pSrc | points to the input vector in q31 |
[out] | pDst | points to the output vector in q5.26 |
[in] | blockSize | number of samples in each vector |
- Returns
- none
◆ sqrt_initial_lut_q31
const q3_28_t sqrt_initial_lut_q31[24] |
|
static |
Initial value:= {
536870912, 506166750, 480191942, 457845052, 438353264, 421156193,
405836263, 392075079, 379625062, 368290407, 357913941, 348367849,
339546978, 331363921, 323745341, 316629190, 309962566, 303700050,
297802400, 292235509, 286969573, 281978417, 277238947, 272730696}